Scientific Notation

- 1. Rewrite the following numbers in scientific notation. Include units.
- a. Altitude of summit of Mt. Ka'ala (highest point on O'ahu): 4020 ft =
- b. Altitude of summit of Mauna Kea: 13,796 ft =
- c. Thickness of a human hair: 0.015 cm =
- d. Wavelength of reddish light: 0.0000007 m =
- e. Height of your instructor: 1.80 m =
- f. Number of galaxies in the universe: 1 trillion galaxies =
- **g.** Age of the universe in seconds: 430,000,000,000,000,000 s =
- h. Volume of a hydrogen atom: 0.000 000 000 000 000 000 000 621 cm3 =
- 2. Calculate the following, and write your answer to each in scientific notation.
- **a.** $10^{10} \times 10^4 =$
- **b**. $10^{10} \div 10^4 =$
- **c.** $10^{10} \div 10^{-4} =$
- **d**. $10^{10} \times {}^{10-4} =$
- 3. Calculate the following, and write your answer to each in scientific notation.
- a. $(34.9 \times 10^6) \times (212 \times 10^{-15}) =$
- **b**. $(0.88 \times 10^{-3}) \times (6.3 \times 10^{-10}) =$
- c. $(9.876 \times 10^{35}) \div (5.4321 \times 10^{-13}) =$
- **d.** mass of Earth ÷ mass of Moon = $(5.974 \times 10^{27} \text{ g}) \div (7.348 \times 10^{25} \text{ g}) =$
- e. mass of Earth mass of Moon = $(5.974 \times 10^{27} \text{ g})$ $(7.348 \times 10^{25} \text{ g})$ =

Powers of Ten

4. Insert the correct metric prefix abbreviations (be careful to distinguish upper case from lower case!):

$$10^{-2} \text{ m} = 1 __m$$

$$10^6 \text{ Hz} = 1$$
 Hz

$$10^9 \text{ y} = 1 ____ \text{y}$$

 $10^6 \text{ W} = 1 ___ \text{W}$
 $10^3 \text{ g} = 1 ___ \text{g}$

$$10^{\circ} g = 1 ____g$$

 $10^{-12} s = 1 ____s$

5. Match each of the following length units to the distance which it is best or most frequently used to describe:

A. Size of an ant

_____ 0.1 nm = 1 \mathring{A} _____ 100 nm = 1000 Å B. Size of a person

C. Distances between neighboring stars ____ 100 μm D. Diameter of human hair _____ 1 mm

____ 100 cm = 1 m E. Size of an atom

_____ 1 km F. Size of viruses and small bacteria _____ 10⁸ km G. Distances within our Solar System

10¹³ km H. Distances around Oahu

 6. a. Starting with your age in years, calculate your age in days. (You do not need to be exact: forget about leap days, etc.) b. Approximately how many days long is your total life expectancy(78 years)?
7. Use your weight in pounds (while standing on the surface of the Earth) to calculate your mass in kilograms and in grams. (1 kg weighs approx. 2.205 lb on the surface of the Earth) This is a useful thing to know, since almost every other country in the world uses kilograms!
8. Convert the speed 1.0000 m/s to mi/h.

9. Perform the following UNIT conversions

10. Imagine that you are living long ago and you are having a discussion about the shape of the world with your colleagues. Write a hypothesis (in if/then format) and then devise a simple test or experiment that you could perform to test (either support or disprove) it, based on the following observation and question:

As I stood on the beach watching the sun set, it slowly and gradually disappeared into the ocean. I now wonder, is the surface of the Earth really flat?